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The Product Operator Formalism 
 
 
 
 

1.  INTRODUCTION 
 
 In this section we will see that the density matrix at equilibrium 
can be expressed in terms of the spin angular momentum component Iz 
of each nucleus.  Moreover, effects of pulses (rotations) and evolu-
tions of noncoupled spins can also be described in terms of angular 
momentum components (Ix,Iy,Iz).  However, in order to express evolu-
tions of coupled spins, we will need additional "building blocks" 
besides angular momentum components.  We will thus introduce a 
"basis set" which is composed of "product operators."  The latter are 
either products between angular momentum components or products 
of angular momentum components with the unit matrix.  We will 
describe this approach and will apply it to several pulse sequences, 
beginning with 2DHETCOR.  

 
2.  EXPRESSING THE DENSITY MATRIX IN TERMS  

OF ANGULAR MOMENTUM COMPONENTS 
 
 We start with the same procedure of describing the density 
matrix at equilibrium, D(0), as in Part I.  In order to generalize the 
approach to an AX (not only a CH) system we preserve separate 
Boltzman factors,  1 + p  and  1 + q, for nuclei A and X, respectively 
[see (I.3-5)]: 
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1 0 0 0
0 1 0 01(0)           (II.1)
0 0 1 0
0 0 0 1

p
D

qN
p q

⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥+
⎢ ⎥+ +⎣ ⎦

 

 
N is the number of states (4 for an AX system). 
 As we did in Part I, we separate the unit matrix from the matrix 
representing population differences.  However, here we choose as a 
factor for the unit matrix the average population (1+p/2+q/2)/N:  

                   
1 / 2 / 2(0) p qD

N
+

⎡ ⎤
⎢ ⎥

+ ⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 0 0 0

0 1 0 0
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/ 2 / 2 0 0 0
0 / 2 / 2 0 01
0 0 / 2 / 2 0
0 0 0 / 2

p q
p q

p qN
p q

− −⎡ ⎤
⎢ ⎥−⎢ ⎥+
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(II.2) 

 
Again, we ignore the term containing the unit matrix which does not 
contribute to magnetization. 

/ 2 / 2 0 0 0
0 / 2 / 2 0 01(0)
0 0 / 2 / 2 0
0 0 0 / 2

p q
p q

D
p qN

p q

− −⎡ ⎤
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(II.3) 
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Separation of the p and q terms gives 
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0

(0)      (II.4)
0 0 1 0 0 0 1 02 2
0 0 0 1 0 0 0 1

p qD
N N

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= − −
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 
 
We recognize in the first term the angular momentum component IzA 
and, in the second term, IzX [see (C13) and (C15)].  We note that the 
signs of the magnetic quantum numbers are in the same order as in 
Figure I.1 of Part I.  We can now write D(0) in shorthand: 
 

                                     (0) zA zX
p qD I
N N

= − − I  (II.5) 

 
 

3.  DESCRIBING THE EFFECT OF A PULSE 
 IN TERMS OF ANGULAR MOMENTA  

 
 The rotation operator for a 90o pulse along the x-axis on nucleus 
X is: 

90

1 0 0
0 1 01                             (see I.9)

0 1 02
0 0 1

xX
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R
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i

⎡ ⎤
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⎢ ⎥
⎢ ⎥
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Its reciprocal is: 

1
90

1 0 0
0 1 01                       (see I.10)

0 1 02
0 0 1

xX

i
i
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−
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We postmultiply D(0) from (II.3) with R90xX (R, for brevity). 
0 0 0 1 0

0 0 0 0 11 1(0)
0 0 0 0 12 2
0 0 0 0 0

p q i 0
0

0
1

p q i
D R

p q iN
p q i

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− +
⎢ ⎥+⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 
0 0

0 01      (II.6)
0 02 2        

0 0

p q ip iq
p q ip iq

ip iq p qN
ip iq p q

− − − −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− + − +
⎢ ⎥+ +⎣ ⎦

 

 
We now premultiply this result by R-1 
 
D(1) = R-1[D(0) R] 

1
4

1 0 0 0 0
0 1 0 0 0

0 1 0 0 0
0 0 1 0 0

N

i p q ip iq
i p q ip

i ip iq p q
i ip iq

− − − − −⎡ ⎤ ⎡
⎢ ⎥ ⎢− −⎢ ⎥ ⎢=
⎢ ⎥ ⎢− − + − +
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⎤
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⎥
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(II.7)

2 0 2 0 0 0
0 2 0 2 0 01 1  

2 0 2 0 0 04 2
0 2 0 2 0 0

p iq p iq
p iq p iq

iq p iq pN N
iq p iq p

− − − −⎡ ⎤ ⎡
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⎥
⎦

 
 
Separation of p and q yields  

1 0 0 0 0 0 0
0 1 0 0 0 0 0

(1)            (II.8)
0 0 1 0 0 0 02 2
0 0 0 1 0 0 0

i
ip qD

iN N
i
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 Comparing the result with (C13) and (C14) we recognize IzA 
and IyX and we can write   

                                      (1) zA yX
p qD I

N N
I−

= +  (II.9) 

 
 Relations (II.5) and (II.9) open the way toward the product 
operator formalism.  We succeeded in writing D(0) and D(1) in angu-
lar momentum shorthand.  Moreover, we foresee the possibility of ob-
taining the result of pulses  without matrix calculations; this can be 
seen by simply representing the angular momenta in their vector form, 
as in Figure II.1.  
 
 

   

90xX

z

y

x

z

y
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-(q/N)IzX

-(p/N)IzA

-(p/N)IzA

(q/N)I yX

 
   
 
   ( / ) ( / )zA zXp N I q N I− −           90xX⎯⎯⎯→ ( / ) ( / )zA yXp N I q N I− +  
 
 

Figure II.1.  Effect of the 90xX pulse. 
 

 
We note that, because of our convention to take gamma as negative 
(see Appendix J) the angular momentum vector orientation is opposite 
to that of the magnetization vector which was used in Part I. 
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4.  AN UNSUCCESSFUL ATTEMPT TO DESCRIBE A 
COUPLED EVOLUTION IN TERMS OF ANGULAR 

MOMENTA  
 
 Let us calculate the result of a coupled evolution of duration te/2 
starting from D(1).  Applying (I.13) to D(1) in (II.7) gives: 

0 0
0 01(2)                          (II.10)
* 0 02

0 * 0

p F
p G

D
F pN

G p

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 

where 
                                     13exp( / 2)eF iq i t= − − Ω  
                                     24exp( / 2)eG iq i t= − − Ω   (II.11) 
With the notations 
                                              13 X JπΩ = Ω +  
                                              24 X JπΩ = Ω −  (II.12) 
 

the exponentials in (II.11) become 
       13exp( / 2) exp[ ( ) / 2]e Xi t i J teπ− Ω = − Ω +  
                                  exp( / 2)exp( / 2)X e ei t i Jtπ= − Ω −  (II.13) 
       24exp( / 2) exp[ ( ) / 2]e Xi t i J teπ− Ω = − Ω −  
                                  exp( / 2)exp( / 2)X e ei t i Jtπ= − Ω +  
 

We make now the following notations: 
                            cos / 2 sin / 2X e X ec t s t= Ω = Ω
                           cos / 2 sin / 2eC Jt S Jteπ π= =  (II.14) 
 

Note that here c and s have different meanings than the ones assigned 
in Part I (I.31).  To make sure, c and s (lower case) represent effects of 
chemical shift and C and S (upper case) represent effects of J-
coupling.  Now the exponentials in (II.11) can be written as: 
 

                             13exp( / 2) ( )( )ei t c is C iS− Ω = − −  (II.15) 
                             24exp( / 2) ( )( )ei t c is C iS− Ω = − +  
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Then F and G become 
 

                 ( )( ) ( ) (F iq c is C iS iq cC sS q sC cS= − − − = − − − + )
)                (II.16) ( )( ) ( ) (G iq c is C iS iq cC sS q sC cS= − − + = − + − −

 

and we can rewrite D(2) as   
( )

0 0
( )

( )
0 0

( )1
( )2

0 0
( )

( )
0 0

( )

iq cC sS
p

q sC cS
iq cC sS

p
q sC cS

iq cC sSN
p

q sC cS
iq cC sS

p
q sC cS

− −⎡ ⎤
−⎢ ⎥− +⎢ ⎥

⎢ ⎥− +
⎢ ⎥− −⎢ ⎥
⎢ ⎥−

−⎢ ⎥
− +⎢ ⎥

⎢ ⎥+
⎢ ⎥

− −⎢ ⎥⎣ ⎦
 
 

(II.17) 
We separate D(2) into five matrices containing the factors p, qcC, qsS, 
qsC, and qcS: 
 

1 0 0 0 0 0 0
0 1 0 0 0 0 0

(2)
0 0 1 0 0 0 02 2
0 0 0 1 0 0 0

i
ip qD cC

iN N
i

−⎡ ⎤ ⎡
⎢ ⎥ ⎢− −⎢ ⎥ ⎢= − +
⎢ ⎥ ⎢
⎢ ⎥ ⎢−⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

 

 

          

0 0 0 0 0 1 0
0 0 0 0 0 0 1

0 0 0 1 0 0 02 2
0 0 0 0 1 0

i
iq qsS sC

iN N
i

−⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢− −
⎢ ⎥ ⎢
⎢ ⎥ ⎢−⎣ ⎦ ⎣ 0

⎤
⎥
⎥
⎥
⎥
⎦

 

 

 

0 0 1 0
0 0 0 1

                    (II.18)
1 0 0 02
0 1 0 0

q cS
N

⎡ ⎤
⎢ ⎥−⎢ ⎥−
⎢ ⎥
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In (II.18) only three terms, the first, second, and fourth, contain 
angular momenta [cf.(C12-C15)].  The first term is − (p/N)IzA, the 
second is (q/N)cCIyX and the fourth is − (q/N)sCIxX.  The third and 
fifth matrices in (II.18) contain neither angular momenta nor a linear 
combination of the six components (IxA, IyA, IzA, IxX, IyX, IzX) known to 
us.  This shows that the six angular momentum components shown in 
parenthesis are not sufficient to express the density matrix after a 
coupled evolution.  In other words they constitute an incomplete set of 
operators.  We will see in the next section how we can put together a 
complete (basis) set which will allow us to treat coupled evolutions in 
a shorthand similar to that used for D(0) and D(1).  We may use as an 
analogy the blocks a child would need to build any number of castles 
of different shapes given in a catalog.  For a given castle the child may 
not need to use all the building blocks, but he knows that none of the 
castles would require a block he does not have. 
 

5.  PRODUCT OPERATORS (PO)  
 
 We will call each building block a basis operator and will give 
in Table II.1 a complete set of such operators for the  AX system. The 
bracket notations proposed by us will be defined as we explain  how 
this set was put together. 
 

Table II.1  Basis Operators for 2 Nuclei (I = 1/2) 
 

  

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0

[11] [ 1]
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

z

⎡ ⎤ ⎡
⎢ ⎥ ⎢ −⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢ −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

  

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0

[1 ] [ ]
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

z zz

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
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0 1 0 0 0 0 0
1 0 0 0 0 0 0

[ 1] [ 1]
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0 0 1 0 0 0 0

i
i

x y
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i
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⎥
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⎥
⎥
⎥
⎥
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0 1 0 0 0 0 0
1 0 0 0 0 0 0

[ ] [ ]
0 0 0 1 0 0 0
0 0 1 0 0 0 0

i
i

xz yz
i

i
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⎢ ⎥ ⎢= =
⎢ ⎥ ⎢−
⎢ ⎥ ⎢− −⎣ ⎦ ⎣

  

0 0 1 0 0 0 0
0 0 0 1 0 0 0

[1 ] [1 ]
1 0 0 0 0 0 0
0 1 0 0 0 0 0

i
i

x y
i

i

−⎡ ⎤ ⎡
⎢ ⎥ ⎢ −⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎣ ⎦ ⎣

  

0 0 1 0 0 0 0
0 0 0 1 0 0 0

[ ] [ ]
1 0 0 0 0 0 0
0 1 0 0 0 0 0

i
i

zx zy
i

i

−⎡ ⎤ ⎡
⎢ ⎥ ⎢−⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢− −⎣ ⎦ ⎣

  

0 0 0 1 0 0 0
0 0 1 0 0 0 0

[ ] [ ]
0 1 0 0 0 0 0
1 0 0 0 0 0 0

i
i

xx xy
i

i

−⎡ ⎤ ⎡
⎢ ⎥ ⎢ −⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎣ ⎦ ⎣

 

0 0 0 0 0 0 1
0 0 0 0 0 1 0

[ ] [ ]
0 0 0 0 1 0

0 0 0 1 0 0 0

i
i

yx yy
i

i

− −⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢−
⎢ ⎥ ⎢−⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

 

 

These product operators have been introduced by Ernst and coworkers 
(see O.W.Sörensen, G.W.Eich, M.H.Levitt, G.Bodenhausen, and 
R.R.Ernst in Progress in NMR Spectroscopy, 16, 1983, 163-192, and  
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references cited therein).  The operators we use are multiplied by a 
factor of 2 in order to avoid writing 1/2 so many times. 
 Each basis operator is a product of two factors, one for each of 
the two nuclei (hence, the name "product operator").  The factor cor-
responding to a given nucleus may be one of its own angular  
momentum components multiplied by two (2Ix, 2Iy, 2Iz) or the unit 
matrix.  
 For example in the product operator [zz] the first factor is 2IzA 
and the second, 2IzX.  Proof: 
 

       

1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥× =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

        2 2zA zX [ ]I I zz× =  (II.19) 
 
Another example: 

[ ]

0 1 0 0
1 0 0 0

[ 1] 2 2
0 0 0 1
0 0 1 0

xA xAx I I

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⋅ = =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 (II.20)

 

 
 

The basis set in Table II.1 allows us now to write (II.18) in shorthand 
because we recognize that the third term in (II.18) contains the 
product operator [zy] and the fifth term contains [zx]. Thus, 
 

(2) ( 2 )[ 1] ( / 2 ) [1 ] ( / 2 ) [ ]D p N z q N cC y q N sS= − + − zy  
                      ( / 2 ) [1 ] ( / 2 ) [ ]q N sC x q N cS zx− −  (II.21) 
 
If we were to continue now to transform into product operators (PO) 
all the subsequent density matrices of HETCOR we would, of course, 
be able to do it, but this would do us no good.  The real advantage will 
consist in finding a way to go from one PO to the next PO  
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without using matrices.  There is a small price to pay for this 
advantage, namely learning a few rules which show how to obtain a 
new PO representation after pulses or evolutions.  It will be seen later 
that the PO advantage is much more important when we have to 
handle systems of more than two spins. 
 
 

6.  PULSE EFFECTS (ROTATIONS) IN THE  
PRODUCT OPERATOR FORMALISM 

 
 The great advantage of expressing the density matrix in terms 
of product operators is found in the dramatic simplification of 
calculations needed to describe pulse effects (rotations).  Let us illus-
trate this by a few examples. 
 
(1) 90xX pulse applied to D(0): 
 

90( / 2 )[ 1] ( / 2 )[1 ] ( / 2 )[ 1] ( / 2 )[1 ]xXp N z q N z p N z q N y− − ⎯⎯⎯→− +  
 

                      D(0)                                                        D(1) 
 
This PO operation can be readily visualized in vector representation. 
Indeed, looking at Figure II.2a we see that, while the angular 
momentum of X moves from − z  to  + y  (90o rotation), the vector of 
A remains unaffected.  
 Let the vector representation guide us now to write another PO 
operation (see Figure II.2b). 
 
(2) 90xA pulse applied to D(0): 
 

90( / 2 )[ 1] ( / 2 )[1 ] ( / 2 )[ 1] ( / 2 )[1 ]xAp N z q N z p N y q N z− − ⎯⎯⎯→+ −  
 

                       D(0)                                                        D(1) 
 
 By following the same procedure in examples 3 to 5 we find out 
that the product operators after any rotation can be written by 
changing the labels x,y,z, of the affected nucleus according to the 
rotation which took place in the vector representation.  Of course, the 
unit matrix (label "1") always stays the same. 
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(3) 90yAX (nonselective) pulse applied to D(0): 
 

90( / 2 )[ 1] ( / 2 )[1 ] ( / 2 )[ 1] ( / 2 )[1 ]yAXp N z q N z p N x q N x− − ⎯⎯⎯→− −  

                       D(0)                                                        D(1) 
 
(4) 90xA applied to D(1) above: 
 

90( / 2 )[ 1] ( / 2 )[1 ] ( / 2 )[ 1] ( / 2 )[1 ]xAp N x q N x p N x q N x− − ⎯⎯⎯→− −  
  
(No change, whatsoever) 
 
(5) 90yA applied to D(1) above: 
 

90( / 2 )[ 1) ( / 2 )[1 ] ( / 2 )[ 1] ( / 2 )[1 ]yAp N x q N x p N z q N x− − ⎯⎯⎯→+ −  
 
The validity of this approach is demonstrated in Appendix E. 
 Many pulse sequences contain rotations other than 90o or 180o. 
We now proceed to apply our vector rule for an arbitrary angle a (see 
Figure II.2c).  The PO representation of this rotation is 

( / 2 )[ 1] ( / 2 )[1 ] ( / 2 )[ 1]
( / 2 )([1 ]cos [1 ]sin )

xXp N z q N z p N z
q N z y

α

α α
− − ⎯⎯⎯→−

− −
 
 
 A few more examples of rotations are given below.  This time 
we ignore the factors  p/2N  or  q/2N. 
 
                                     90[ ] [ ]yAzz xz⎯⎯⎯→
 

                                     
90[ ] [ ]yXzz zx⎯⎯⎯→

 

                                     90[ ] [ ]xAzz yz⎯⎯⎯→−
 

                                    180[ ] [ ]yAxy x⎯⎯⎯→− y  
 

                                     90[1 ] [1 ]xAy y⎯⎯⎯→
 

                                    [ ] [ ]cos [ ]sinyAzz zz xzα α α⎯⎯⎯→ +  


